
Optimizing Database Performance

Database Design

Department of Computer Engineering

Sharif University of Technology

Maryam Ramezani maryam.ramezani@sharif.edu

mailto:maryam.ramezani@sharif.edu

2

Introduction

CE384: Database Design Maryam Ramezani

3

❑ DBMS stores vast quantities of data

❑ Data is stored on external storage devices and fetched into main

memory as needed for processing

❑ Page is unit of information read from or written to disk. (in DBMS,

page may have size 8KB or more).

❑ Data on external storage devices:
○ Disks: Can retrieve random page at fixed cost

But reading several consecutive pages is much cheaper than reading them in random order
○ Tapes: Can read pages only in sequence

Cheaper than disks; used for archival storage

❑ Cost of page I/O dominates cost of typical database operations

Motivation

CE384: Database Design Maryam Ramezani

4

❑ File organization:
○ Method of arranging a file of records on external storage.
○ Record id (rid) is sufficient to physically locate a record

❑ Indexes:
○ Indexes are data structures that allow us to find the record ids of

records with given values in index search key fields

Files and indices

CE384: Database Design Maryam Ramezani

5

Many alternatives exist, each ideal for some situations, and not so good in

others:

○ Heap (random order) files: Suitable when typical access is a file

scan retrieving all records.

○ Sorted Files: Best if records must be retrieved in some order, or

only a `range’ of records is needed.

○ Indexes: Data structures to organize records via trees or hashing.

▪ Like sorted files, they speed up searches for a subset of

records, based on values in certain (“search key”) fields

▪ Updates are much faster than in sorted files.

Alternative File Organizations

CE384: Database Design Maryam Ramezani

6

Indexing

CE384: Database Design Maryam Ramezani

7

❑ Scan Search

Introduction

CE384: Database Design Maryam Ramezani

It is insufficient!!!

8

Introduction

CE384: Database Design Maryam Ramezani

9

❑ An index on a file speeds up selections on the search key fields for the
index.
○ Any subset of the fields of a relation can be the search key for an index on the

relation (e.g., age or colour).
○ Search key is not the same as key (minimal set of fields that uniquely identify a

record in a relation).

❑ An index contains a collection of data entries, and supports efficient
retrieval of all data entries k* with a given key value k.

Indexes

CE384: Database Design Maryam Ramezani

10

❑ In Internal schema of Three-Schema Architecture!

❑ An index for an attribute (or attributes) of a relation is a data structure used to

speed access to tuples of a relation, given values of the attribute(s).

❑ In a DBMS it is a balanced search tree with giant nodes (a full disk page) called

a B-tree.

❑ Can make query answering and joins involving the attribute much faster.

❑ On the other hand, modifications are more complex and take longer.

Indexes

11

❑ No standard!

❑ Typical syntax:

CREATE INDEX foodInd ON foods(nationality);

CREATE INDEX SellInd ON Sells(resturant, food);

Declaring Indexes

12

❑ Given a value v, the index takes us to only those tuples that have v in the

attribute(s) of the index.

❑ Example: use foodInd and SellInd to find the prices of foods which nationality is

Iranian and sold by Joe. (next slide)

❑ With the indices, just retrieve tuples satisfying these conditions
○ Clearly, can result in huge savings (vs. retrieving all tuples from the mentioned relations)

SELECT price

FROM foods, Sells

WHERE nationality = ‘Iranian’ AND

foods.name = Sells.food AND

resturant = ‘Joe’’s resturant’;

1. Use foodInd to get all the foods which Iranian nationality.

2. Then use SellInd to get prices of those foods, with resturant = ’Joe’’s resturant’

Using Indexes

13

E.g., Tree index

❖ Leaf pages contain data entries
❖ Non-leaf pages have index entries; used only to direct searches:

Non-leaf

Pages

Leaf Pages

(Sorted by search key)

CE384: Database Design Maryam Ramezani

14

❑ Three alternatives:
○ Data record with key value k

○ <k, rid of data record with search key value k>

○ <k, list of rids of data records with search key k>

❑ Alternative 3 more compact than Alternative 2, but leads to

variable sized data entries even if search keys are of fixed length.
❑ Choice of alternative for data entries is orthogonal to the indexing

technique used to locate data entries with a given key value k
○ Examples of indexing techniques: B+ tree, hash based structures
○ Typically, index contains auxiliary information that directs searches to

the desired data entries
❑ Clustered vs. unclustered: If order of data records is the same as, or

`close to’, order of data entries, then called clustered index.

Alternatives for Data Entry k* in Index

CE384: Database Design Maryam Ramezani

15

❑ Suppose that Alternative (2) is used for data entries, and that the data records

are stored in a Heap file.
○ To build clustered index, first sort the Heap file (with some free space on each page for future

inserts).

○ Overflow pages may be needed for inserts. (Thus, order of data recs is `close to’, but not

identical to, the sort order.)

Clustered vs. Unclustered Index

Index entries

Data entries

direct search for

(Index File)

(Data file)

Data Records

data entries

Data entries

Data Records

CLUSTERED UNCLUSTERED

CE384: Database Design Maryam Ramezani

16

❑ A cluster index defined the order in which

data is physically stored in a table.
○ For example Dictionary.

❑ A table can only have one cluster index.

❑ If you configure a PRIMARY KEY, Database

Engine automatically creates a clustered

index, unless a clustered index already exists.

Clustered Index

CE384: Database Design Maryam Ramezani

17

Clustered Index

CE384: Database Design Maryam Ramezani

18

Clustered Index

CE384: Database Design Maryam Ramezani

.

• A table can only have one cluster
index. It's impossible to physically
arrange the same date in two different
ways without having a separate
structure to store that information.

.
• Non-clustered Indexes come in!

19

❑ A non-clustered index is stored at one

place and table data is stored in

another place. For example Book Index.

❑ Instead of having base table at the leaf

of tree, we have a set of pointers or

references back to the base data.

❑ A table can have multiple non-clustered

index.

❑ Non-clustered index is slower than

clustered index.

❑ If the index is non-unique, a uniquified

value is adds internally to make it

unique, and it carries through into

reference values. RIDs are always

unique.

Non-Clustered Index

CE384: Database Design Maryam Ramezani

20

Non-Clustered Index

CE384: Database Design Maryam Ramezani

RID=Row Identifier= physical
location of the rows in the
table.

21

❑ Good for equality selections.

▪ Index is a collection of buckets. Bucket = primary page plus zero or

more overflow pages.

▪ Hashing function h: h(r) = bucket in which record r belongs. h looks at

the search key fields of r.

❑ If Alternative (1) is used, the buckets contain the data records; otherwise, they

contain <key, rid> or <key, rid-list> pairs.

Hash-Based Indexes

CE384: Database Design Maryam Ramezani

22

Index-organized file hashed on age, with auxiliary index on sal

h1 h2

Smith, 44, 3000

Jones, 40, 6003

Tracy, 44, 5004

Ashby, 25, 3000

Basu, 33, 4003

Bistow, 29, 2007

Cass, 50, 5004

Daniels, 22, 6003

3000

3000

5004

5004

4003

2007

6003

6003

age sal

h(sal)=00

h(sal)=11

h(age)=00

h(age)=01

h(age)=10

Alternative 2 with

non-clustered

Alternative 1 with clustered

CE384: Database Design Maryam Ramezani

23

B+ Tree Indexes

❖ Leaf pages contain data entries, and are chained (prev & next)
❖ Non-leaf pages contain index entries; they direct searches:

P0 K 1 P 1 K 2 P 2 K m P m

index entry

Non-leaf

Pages

Pages

Leaf

Why?

CE384: Database Design Maryam Ramezani

24

❑ Faster than binary search.

❑ Lots of pointer while the height o tree is at most 3 or 4!

❑ Pages at leaves are linked for interval search!

❑ Example
○ Number of pointers: 100 with height:4 will be 100^4 leaves.

○ Order of tree is 4 but binary search is log(10^4)

B+ Tree Indexes

CE384: Database Design Maryam Ramezani

25

❑ Find 28*?
❑ Find 29*?
❑ Find All > 17* and < 30*
❑ Insert/delete: Find data entry in leaf, then change it. Need to adjust parent

sometimes.
○ And change sometimes bubbles up the tree

Example B+ Tree

CE384: Database Design Maryam Ramezani

26

❑ explain analyze select * from athlete a where sport_id=1

❑ explain analyze select athlete_id from athlete a where athlete_id =15

❑ explain analyze select * from athlete a where athlete_id =15

❑

❑ explain analyze select * from athlete a where a.athlete_name ='browntoni’

❑ explain analyze select * from athlete a where a.athlete_name like ‘%b%'

Lets test on Postgres

CE384: Database Design Maryam Ramezani

27

❑ Since a non-clustered index is separate from the base data, the base

data could exist instead as clustered index. So the references in leaf of

non-clustered index are not RID, but instead are the clustered index

key values.

Using Both Clustered & Non-Clustered

CE384: Database Design Maryam Ramezani

28

❑ Filtered indexes only contain rows that meet a user-defined predicate, by adding

WHERE clause to the index definition. (In Postgres its name Partial Index)

❑ A clustered index can’t be filtered because it has to contain all the data in the table.

Filtered Indexes

CE384: Database Design Maryam Ramezani

29

❑ A major problem in making a database run fast is deciding which indexes to

create.

❑ Recall:
○ Pro: An index speeds up queries that can use it.

○ Con: An index slows down modifications on its relation because the index must be modified too.

❑ The key for a relation is usually the most useful attribute to have an index on:
○ Queries in which a value for a key is specified are common.

○ For a given key value there is only one tuple. Thus the index returns at most one tuple, requiring

just 1 page from the relation instance to be retrieved.

Database Tuning

30

Partitioning

CE384: Database Design Maryam Ramezani

31

❑ When the table size grows over time, each operation cost on the table

will increase as well.

❑ We can’t increase the size of the table over 32GB in normal conditions.

Before reaching this size performance issues may arise.

Good Solution: Partitioning

Partitioning

CE384: Database Design Maryam Ramezani

32

❑ It shouldn’t be the first option to improve performance!!!

Why?
○ It adds another level of complexity!!

○ Unlike other performance enhancing such as indexing, partitions are part of

table definition so its difficult to change!!

Add partitioning for a table?

CE384: Database Design Maryam Ramezani

33

❑ Signs to check a table needs partitioning:
1) Table Size: there is no rule! But encounter long responses time and table

is larger than 200GB

Add partitioning for a table?

CE384: Database Design Maryam Ramezani

34

2) Table Bloat: For a DELETE, it simply marks

the row as unavailable for future transactions,

and for UPDATE, under the hood it's a

combined INSERT then DELETE, where the

previous version of the row is marked

unavailable.

The space cannot be used. To then mark the

space as available for use by the database, a

vacuum process (manually or automatically)

needs to come along behind the operations,

and mark that space available for the database

to use.

Vacuum process should scan all rows. If table

is large vacuum process will take longer.

Partitioning can help to make it faster with

less CPU.

Add partitioning for a table?

CE384: Database Design Maryam Ramezani

35

❑ Partitioning can drastically improve performance on a table when done right, but

when not needed o done wrong can make the performance worse or it can make

the database unstable.

❑ First look for access patterns for splitting the tables:
○ By knowing the applications that access the database.

○ Monitoring the logs and generating reports.

How should the Tables be partitioned?

CE384: Database Design Maryam Ramezani

36

How should the Tables be partitioned?

CE384: Database Design Maryam Ramezani

We look for columns that are either in where or in join conditions.

These will be the partition keys.
In a good design, we have a small subset of data rather than the whole

37

Range Partition

List Partition

Hash Partition

Composite Partition

Partitioning Methods

CE384: Database Design Maryam Ramezani

38

❑ Range partitioning maps data to partitions on the basis of

ranges of partition key values for each partition.

Partitioning Methods

CE384: Database Design Maryam Ramezani

39

❑ List partitioning maps rows to partitions by using a

list of discrete values for the partitioning column.
○ Good when partition key is category value.

Partitioning Methods

CE384: Database Design Maryam Ramezani

40

❑ Hash partitioning maps data to partitions by using a

hashing algorithm applied to a partitioning key.
○ Especially useful when there is no obvious way of diving

data into logical groups.

Partitioning Methods

CE384: Database Design Maryam Ramezani

41

❑ Composite partitioning:
○ Range-Hash sub partitions the range partitions using a hashing

algorithm.

○ Range-List sub partitions the range partitions using an explicit list.

Partitioning Methods

CE384: Database Design Maryam Ramezani

42

❑ Consider following table with not null age attribute:

Range Partition - Example

CE384: Database Design Maryam Ramezani

43

❑ create table customers (id integer, name text, age numeric)

partition by range(age)

❑ create table cust_young partition of customers for values

from (MINVALUE) to (25)

❑ create table cust_medium partition of customers for values

from (25) to (75)

❑ create table cust_old partition of customers for values from

(75) to (MAXVALUE)

❑ insert into customers values (1,'Bob',20),

(2,'Alice',20),(3,'Doe',38),(4,'Richard',80)

❑ select * from customers c

❑ select tableoid::regclass,* from customers c

Range Partition- Example

CE384: Database Design Maryam Ramezani

	Default Section
	Slide 1: Optimizing Database Performance
	Slide 2: Introduction
	Slide 3: Motivation
	Slide 4: Files and indices
	Slide 5: Alternative File Organizations
	Slide 6: Indexing
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Indexes
	Slide 10: Indexes
	Slide 11: Declaring Indexes
	Slide 12: Using Indexes
	Slide 13: E.g., Tree index
	Slide 14: Alternatives for Data Entry k* in Index
	Slide 15: Clustered vs. Unclustered Index
	Slide 16: Clustered Index
	Slide 17: Clustered Index
	Slide 18: Clustered Index
	Slide 19: Non-Clustered Index
	Slide 20: Non-Clustered Index
	Slide 21: Hash-Based Indexes
	Slide 22: Index-organized file hashed on age, with auxiliary index on sal
	Slide 23: B+ Tree Indexes
	Slide 24: B+ Tree Indexes
	Slide 25: Example B+ Tree
	Slide 26: Lets test on Postgres
	Slide 27: Using Both Clustered & Non-Clustered
	Slide 28: Filtered Indexes
	Slide 29: Database Tuning
	Slide 30: Partitioning
	Slide 31: Partitioning
	Slide 32: Add partitioning for a table?
	Slide 33: Add partitioning for a table?
	Slide 34: Add partitioning for a table?
	Slide 35: How should the Tables be partitioned?
	Slide 36: How should the Tables be partitioned?
	Slide 37: Partitioning Methods
	Slide 38: Partitioning Methods
	Slide 39: Partitioning Methods
	Slide 40: Partitioning Methods
	Slide 41: Partitioning Methods
	Slide 42: Range Partition - Example
	Slide 43: Range Partition- Example

